Simulation of rural highways with Aimsun
Annique Lenorzer, TSS, Barcelona
Ana Moreno, Technical University of Munich

ISEHP 2016 rural roads workshop, Berlin
Motivation
slope model implementation in Aimsun

ISEHP 2016 rural roads workshop, Berlin
Slopes: Upgrades model from TWOPAS

Acceleration profile and crawl speed as a function of: weight, engine power and front surface.
Slopes: Downgrades from the GSRS

Heavy vehicles put a smaller gear and reduce their speed to avoid brake overheating.

"Feasibility of a grade severity rating system" FHWA-RD-79-116, 1980
Slopes: Truck’s speed
Passing model

1. Desire
2. Decision
3. Execution
Passing desire: Speed, Delay, Rank and Remaining TT
Passing desire: Speed, Delay, Rank and Remaining TT

Two-Way Overtaking Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Time Threshold</td>
<td>60.00 sec</td>
</tr>
<tr>
<td>Minimum Speed Difference Threshold</td>
<td>10.00 km/h</td>
</tr>
<tr>
<td>Maximum Speed Difference Threshold</td>
<td>35.00 km/h</td>
</tr>
<tr>
<td>Maximum Rank</td>
<td>2</td>
</tr>
<tr>
<td>Remaining Travel Time Threshold</td>
<td>0.00 sec</td>
</tr>
</tbody>
</table>

Additional Parameters

- Number of Simultaneous Overtakings Allowed: 1
- Delay Between Simultaneous Overtakings: 10.00 sec
- Sensitivity Factor for Reduced Car-Following: 0.65
- Overtaking Speed Enhancement Factor: 1.10
- Speed Difference Threshold for Enhanced Overtaking Speed: 15.00 km/h

Diagram:

- **Dashed line**
 - Car 4: P = 0 %
 - Car 3: P = 1 / 2 = 50 %
 - Car 2: P = 1 / 1 = 100 %

Graph:

- **passing desire probability**
 - Rank vs. max rank
Passing desire: Speed, Delay, Rank and Remaining TT

<table>
<thead>
<tr>
<th>Two-Way Overtaking Model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Time Threshold:</td>
<td>60,00 sec</td>
</tr>
<tr>
<td>Minimum Speed Difference Threshold:</td>
<td>10,00 km/h</td>
</tr>
<tr>
<td>Maximum Speed Difference Threshold:</td>
<td>35,00 km/h</td>
</tr>
<tr>
<td>Maximum Rank:</td>
<td>2</td>
</tr>
<tr>
<td>Remaining Travel Time Threshold:</td>
<td>0,00 sec</td>
</tr>
</tbody>
</table>

- **Number of Simultaneous Overtakings Allowed:** 1
- **Delay Between Simultaneous Overtakings:** 10,00 sec
- **Sensitivity Factor for Reduced Car-Following:** 0,65
- **Overtaking Speed Enhancement Factor:** 1,10
- **Speed Difference Threshold for Enhanced Overtaking Speed:** 15,00 km/h

Diagram:
- Remaining Travel Time = 20" (P = 0 → 100%)
- 24" (P = 10/20 → 50%)
- Reaching Destination
PASSING DESIRE

YES

Leader vehicle

NO

delay=0

YES

t=t+dt

FREE FLOW STATE

NO

V=Vdes

FOLLOWING STATE

dV=Vdes-Vlead
delay=delay+dt
dVTthres=f (delay)

Passing gain=f (Remaining Time,Rank)

delay=0

t=t+dt

dV > dVTthres

YES

NO

YES

NO

Passing gain

NO

NO

rank<maxRank

PASSING DESIRED

PASSING NOT DESIRED

t=t+dt
Passing decision: allowed? solid line, multiple passings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Way Overtaking Model</td>
<td>enabled</td>
</tr>
<tr>
<td>Delay Time Threshold</td>
<td>60,00 sec</td>
</tr>
<tr>
<td>Minimum Speed Difference Threshold</td>
<td>10,00 km/h</td>
</tr>
<tr>
<td>Maximum Speed Difference Threshold</td>
<td>35,00 km/h</td>
</tr>
<tr>
<td>Maximum Rank</td>
<td>2</td>
</tr>
<tr>
<td>Remaining Travel Time Threshold</td>
<td>0,00 sec</td>
</tr>
<tr>
<td>Number of Simultaneous Overtakings Allowed</td>
<td>1</td>
</tr>
<tr>
<td>Delay Between Simultaneous Overtakings</td>
<td>10,00 sec</td>
</tr>
<tr>
<td>Sensitivity Factor for Reduced Car-Following</td>
<td>0.65</td>
</tr>
<tr>
<td>Overtaking Speed Enhancement Factor</td>
<td>1.10</td>
</tr>
<tr>
<td>Speed Difference Threshold for Enhanced Overtaking Speed</td>
<td>15,00 km/h</td>
</tr>
</tbody>
</table>
Passing decision: feasible?

\[PT + \text{safety margin} < \min (\text{TTC}, \text{TTSign}) \]
Passing decision: TCC in absence of opposing vehicle

Visibility Distance: 300,00 m
Visibility Factor: 1,50
PASSING DECISION

PASSING DESIRED

YES

Passing permitted

NO

Passing time (PT), TTC, TTSign, Safetymargin

YES

PT + safety margin < TTC

NO

NO

YES

PT < TTSign

PASS STARTS

PASS DOES NOT START
Passing execution: maneuver distance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Time Threshold</td>
<td>60,00 sec</td>
</tr>
<tr>
<td>Minimum Speed Difference Threshold</td>
<td>10,00 km/h</td>
</tr>
<tr>
<td>Maximum Speed Difference Threshold</td>
<td>35,00 km/h</td>
</tr>
<tr>
<td>Maximum Rank</td>
<td>2</td>
</tr>
<tr>
<td>Remaining Travel Time Threshold</td>
<td>0,00 sec</td>
</tr>
<tr>
<td>Number of Simultaneous Overtakings Allowed</td>
<td>1</td>
</tr>
<tr>
<td>Delay Between Simultaneous Overtakings</td>
<td>10,00 sec</td>
</tr>
<tr>
<td>Sensitivity Factor for Reduced Car-Following</td>
<td>0,65</td>
</tr>
<tr>
<td>Overtaking Speed Enhancement Factor</td>
<td>1,10</td>
</tr>
<tr>
<td>Speed Difference Threshold for Enhanced Overtaking Speed</td>
<td>15,00 km/h</td>
</tr>
</tbody>
</table>
Passing execution: speed enhancement
PASSING EXECUTION

PASS STARTS

PT + safety margin < TTC

PT < AT

increase acceleration

PT > 0

CONTINUE PASSING

PASS COMPLETED

ABORT PASS
Model’s parameters summary

<table>
<thead>
<tr>
<th>Vehicle type</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way Two-lane Overtaking Model</td>
<td>Two-Way Overtaking Model</td>
</tr>
</tbody>
</table>

desire

- **Delay Time Threshold:** 60,00 sec
- **Minimum Speed Difference Threshold:** 10,00 km/h
- **Maximum Speed Difference Threshold:** 35,00 km/h
- **Maximum Rank:** 2
- **Remaining Travel Time Threshold:** 0,00 sec

decision

- **Number of Simultaneous Overtakings Allowed:** 1
- **Delay Between Simultaneous Overtakings:** 10,00 sec
- **Sensitivity Factor for Reduced Car Following:** 0,65
- **Overtaking Speed Enhancement Factor:** 1,10
- **Speed Difference Threshold for Enhanced Overtaking Speed:** 15,00 km/h

execution

<table>
<thead>
<tr>
<th>Two-Way Overtaking Model</th>
<th>Mean</th>
<th>Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margin for Overtaking Manoeuvre</td>
<td>5,00 secs</td>
<td>3,00 secs</td>
<td>1,00 secs</td>
<td>10,00 secs</td>
</tr>
</tbody>
</table>

Mirror Section: 396

Visibility Distance: 300,00 m

Visibility Factor: 1,50
Calibration

- **Microscopic**
 - Desired speed
 - Passing time
 - Critical gap

- **Macroscopic**
 - 15 min traffic flow
 - Platooning
 - Number of passes
Validation with Field Data

ISEHP 2016 rural roads workshop, Berlin
Field study

- **Observations**
 - No intervention → “naturalistic study”
 - Two methods
 - External observer
 - Internal observer (impeding vehicle): “quasi-naturalistic”
Field study

- Static method
 - Mobile traffic laboratory
 - Recording in entire passing zones
Field study

- **Static method**
 - Mobile traffic laboratory

- **Equipment**
Field study

- Dynamic method
 - Instrumented vehicles
 - Recording during whole following + passing
 - “Acting” as impeding vehicle
 - Speed
 - Equipment
Field study

- Dynamic method
 - Instrumented vehicles
- Equipment
Field study

- **Site selection**
 - Static method passing zones
 - 20 passing zones
 - 230 to 1270 m PZL
 - 41:55 h
 - 648 maneuvers
 - 100 km/h Vd

- **Dynamic method road segments**
 - 6 road segments
 - 100 to 1855 m PZL
 - 43:40 h
 - 551 maneuvers
 - 70 to 120 km/h Vd
Field study

- **Data reduction**
 - Maneuver classification
 - Number of impeding
 - Simple/double
 - Type of impeding/type of passing
 - Passenger car/truck
 - Starting mode
 - Flying/accelerative
 - Lighting conditions
 - Daytime/nighttime
 - Driver and passengers
 - Age and gender
Field study

- **Data reduction**
 - Passing maneuver
 - Passing phases: t1 to t4
 - Time intervals: t3-t1 and t4-t3
 - Distances
 - Speeds
Field study

- **Data reduction**
 - Following maneuver
 - Presence of opposing vehicles
 - ASD

Opposing vehicle limited

Sight distance limited
Applications
- Design criteria for minimum passing zone lengths
- Operational efficiency and safety considerations
2+1

- **Elements:**
 - Based on 2-lane model (1+1)
 - The combination of acceleration lane + 2 lane section + deceleration lane is not adequate
 - Mirrored sections
 - Entrance and exit sections for platoon generation
 - Main (center) section: Length = Passing lane length:
 - Visibility is very low
 - Opposing traffic flow is zero
 - The real opposing traffic flow is not simulated - the opposing direction of the model does not exist in the reality
2+1

- Calibration:
 - 5 passing lanes in Poland (Tracz and Kiec, 2015)
 - Percent of passing vehicles

![Graph showing the relationship between passing lane length and percent of passing vehicles. The graph includes data points for both field data and simulations.]
2+1

Future work:

- Improve Aimsun’s graphical user interface of two-way sections and provide a tool to edit 2+1 sections.
- Microscopic review of the passing model (location of the passing maneuvers and speeds)
- Obtain optimal passing lane length
- Determine optimal location of passing lanes for incomplete 2+1 roads
- Case studies:
 - Valencia (Spain)
 - Madrid (Spain)
 - Navarra (Spain)
References

- **Model in Aimsun:**
 - Llorca, Carlos; Moreno, Ana Tsui; Lenorzer, Annique; Casa, Jordi; Garcia, Alfredo (2015). Development of a New Microscopic Passing Maneuver Model for Two-Lane Rural Roads. Transportation Research Part C - Emerging Technologies 52, 157-172.

- **Field data and characterization of passing maneuvers:**
 - Llorca, Carlos; Moreno, Ana Tsui; Tarek; Garcia, Alfredo (2014). Sight Distance Standards Based On Observational Data Risk Evaluation Of Passing. Transportation Research Record 2404, 18-26.
 - Llorca, Carlos; Moreno, Ana Tsui; Garcia, Alfredo; Pérez Zuriaga, Ana María (2014). Multiple Passing Maneuvers: New Design and Marking Criteria to Improve Safety. Advances in Transportation Studies Special Issue, 71-82.
 - Llorca, Carlos; Moreno, Ana Tsui; Garcia, Alfredo; Pérez Zuriaga, Ana María (2013). Daytime and Nighttime Passing Maneuvers on a Two-Lane Rural Road in Spain. Transportation Research Record 2358, 3-11.
 - Llorca, Carlos; Garcia, Alfredo; Moreno, Ana Tsui; Pérez Zuriaga, Ana María (2013). Influence of Age, Gender and Delay on Overtaking Dynamics. IET Intelligent Transport Systems 7(2), 174-181.

- **Applications:**
 - Rafael Diez de Arizaleta, Comunidad Foral de Navarra, Spain ISEPH Workshop 2016.